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Introduction

What drives an animal’s behavior?
The study of animal movement as it reveals insights into animal behavior is of
great interest in ecology. Further interests lie in understanding drivers of animal
behavior, e.g. impact of habitat, time of day, season.

Hidden Markov Models (HMMs)
Animal movement data often takes the form of data collected over time,
sometimes at regular temporal scales. Hidden Markov models (HMMs) then
provide an intuitive mathematical structure that matches our biological intuition
of the movement process – the movements we observe are a product of an
unobserved behavioral process.
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HMMs

A N-state HMM, for a fixed N ∈ N, is a doubly stochastic time series model
composed of an observation process, {Yt}, driven by an underlying latent (hidden)
process {St}. In its basic formulation, an HMM is defined by three components:

state-dependent densities f(yt | St = n), n = 1, . . . , N
a transition probability matrix (t.p.m.) Γ
an initial state distribution δ

(Observed) Yt−1 Yt Yt+1

(Hidden) St−1 St St+1. . . . . .
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Animal Movement Data: Positions Over Time

In the context of animal movement, positional data is gathered via GPS or
accelerometers, and, in order to connect the positions of the animal to behaviors
of interest, this is transformed into step lengths, dt, and turning angles, at,
(Morales, 2004).

Thus, the observed process results in {Yt} = {dt, at}.
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Data analysis example: African elephant movement
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Animal condition

In classical approaches, due to the difficulties to gather observations in a frequent
basis, animal’s condition is not incorporated as a factor that explains the
movement, and thus behavioral, process.

How can the condition process be predicted by incorporating the animal
movement data and behavior process?

Marco Gallegos Herrada , Vianey Leos Barajas , Juan Morales Incorporating body condition into the analysis of animal movement 6 / 30



Research goals
Objective

Incorporate animal behaviour dynamics and animal movement observations to
predict animal’s condition,
Use predictions to explain the animal’s movement dynamics

This is known as feedback mechanisms
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Case study: Sheep movement data

A flock of 60 sheep from northern Patagonia, in Argentina, was monitored using
GPS and their location was collected during 8 months, every five minutes. Their
body fat percentage were also collected approximately every month.
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Model formulation
Data Structure

We construct a general framework to model two types of data sources, positional
data and physiological data. Percentage body fat (in kg) in Merino sheep as a
proxy for sheep’s overall body condition.

Observations of condition over time t, {gt}T
t=1 (coarse temporal scale;

collected once a month)
For time t, observations of movement in the interval [t, t+ 1) distance,
{dt,k}K

k=1, and turning angle, {at,k}K
k=1, K ∈ N (fine temporal scale;

reported every 5 minutes).
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Model formulation
Transition probability matrix

We assume a first-order Markov property for the evolution of the state
sequence, so that St,k depends on other states only through St,k−1, if k > 1,
or St−1,K if k = 1.
We allow the condition of an animal, gt, during the tth interval, [t, t+ 1), to
affect the manner in which the states are generated, by incorporating gt as a
covariate.

We denote the t.p.m. during the tth period as Γt(gt), with entries
γt

ij(gt) = Pr(St,k = j | St,k−1 = i, gt), i, j ∈ {1, . . . , N} and

γt
ij(gt) =

exp(ρt
ij)∑N

j=1 exp(ρt
ij)
, where ρt

ij =
{
τ

(ij)
0 + τ

(ij)
1 gt if i ̸= j;

0 otherwise.
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Missing observations of gt

What do we do if gt is not observed at time t?

The body fat percentage can be expressed as the ratio of two latent processes:

gt =

body fat︷︸︸︷
bt

wt︸ ︷︷ ︸
overall body mass

where wt = body fat + lean mass = bt +mt
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Energetic Balance

To describe the evolution of dynamics of gt, we need to understand how sheep
gains/loses energy, and subsequently converts these into gains/losses in body fat
and lean mass. Of interest then is the energetic balance, Et:

Et(St−1,dt−1) =
[

K∑
k=1

I(St−1,k = foraging)
]

︸ ︷︷ ︸
Behaviour process

I −

[
K∑

k=1
dt−1,k

]
︸ ︷︷ ︸
Animal movement

Lt−1 − K

288Ct−1

Energetic intake I (sheep exhibiting foraging behavior)
Movement (locomotion) costs Lt

Daily maintenance costs Ct
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Evolution of Body Fat and Lean Mass

The evolution of body fat, bt, is then (Robbins 1993)

bt = bt−1 + .8 ∗ Et

38.12 , (1)

and the evolution of muscle mass, mt, is given by,

mt = mt−1 + .2 ∗ Et

22.64 . (2)

Since bt,mt depends on Et, a question arises:

How
∑K

k=1 I(St,k = foraging) is distributed?
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Distribution computation of ∑K
k=1 I(St,k = foraging)

Let’s consider the case N = 2. Thus, {St,k}K
k=1 is a 2-state Markov process with

initial distribution δt(gt) = (δt
1(gt), δt

2(gt)) and t.p.m.

Γt(gt) =
[
γt

11(gt) γt
12(gt)

γt
21(gt) γt

22(gt)

]
=

[
p 1 − p

1 − q q

]
.

Let’s define Ft =
∑K

k=1 I(St,k = 2). We will denote the probability of the i− th
occurrence of being in state 2 at time k as P (V i = k). Therefore, for i > 0,

P (Ft = i) =
K−1∑
k=1

P (V i = k)P (St,j = 1, k < j ≤ K | St,k = 2) + P (V i = K).

Notice that P (Ft = 0) = P (St,k = 1 for all k ∈ {1, . . .K}) = δt
1(gt)pK−1.

How do we compute P (V i = k)?
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Waiting time distribution patterns for HMMs

Notice that {V ≤ k} (having entered state 2 by time k) can be viewed as the
pattern Λ(1) = 2 having occurred by time k.

In general: given an unobserved state sequence St,1, . . . , St,K and a sequence of
symbols of the set {1, 2}, or pattern, Λ, how can we compute the probability that
Λ has occurred in the hidden state sequence by time k ≤ K?

Key: Auxiliary Markov chains!
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Waiting time distribution patterns for HMMs

Given {St,k} and a pattern Λ, it is possible to construct a Markov chain {Zk}
such that there’s a one-to-one correspondence between classes of its states and
those of {St,k}, with an absorbing state, Γ, defined to correspond to the
occurrence of pattern of interest [Aston & Martin, 2007].

Such auxiliary Markov chain holds ([Aston & Martin, 2007]; Theorem 3.2)

P (Zk = Γ) = ψ1

 k∏
j=2

Mj

U(Γ) (3)

Mj = t.p.m. for transitions from Zj−1 to Zj

ψ1 = initial distribution of Z1

U(Γ) = column vector with a one in the location corresponding to the
absorbing state Γ, and zeroes elsewhere
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Construction of states for {Zk}
Let’s consider the alternating run pattern of length exactly h, with h odd:

Λ(h) =
h︷ ︸︸ ︷

2121 . . . 212 .

Progress in the pattern can be

{2, 21, 212, . . . ,
h−1︷ ︸︸ ︷

2121 . . . 21}.

Then, the states of SZ are defined as ordered vectors pairs, the first element being
the current value of the {St,k} sequence, and the second element being the
progress into a pattern:

(1, 21), (1, 2121), . . . (1,
h−1︷ ︸︸ ︷

212 . . . 21),

(2, 2), (2, 212), (2, 21212), . . . (2,
h−2︷ ︸︸ ︷

212 . . . 12),Γ.

The state (1,∅) is needed as a possible state for Z1, where ∅ denotes that there’s
no progress in the pattern.
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Computation of transition probabilities for {Zk}
The transition probabilities are based on the transition probabilities for the {St,k}
sequence through the first entry of the ordered vector pairs, while the entire vector
state from SZ determines the possible destination of the state:

P (Zk = (1,
i+1︷ ︸︸ ︷

212 . . . 21) | Zk−1 = (2,
i︷ ︸︸ ︷

212 . . . 2))
= P (St,k = 1 | St,k−1 = 2), i odd, i = 1, . . . , h− 2

P (Zk = (2, 2) | Zk−1 = (2,
i︷ ︸︸ ︷

212 . . . 2))
= P (St,k = 2 | St,k−1 = 2), i odd, i = 1, . . . , h− 2

P (Zk = Γ | Zk−1 = (1,
h−1︷ ︸︸ ︷

212 . . . 21))
= P (St,k = 2 | St,k−1 = 1)

P (Zk = Γ | Zk−1 = Γ) = 1
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Special case: h = 1
For h = 1, Λ(1) = 2, and the states of SZ are

(1,∅),Γ,

and the transitions probabilities result in

P (Zk = (1,∅) | Zk−1 = (1,∅))
= P (St,k = 1 | St,k−1 = 1) = p

P (Zk = Γ | Zk−1 = (1,∅)) =
P (St,k = 2 | St,k−1 = 1) = 1 − p

P (Zk = Γ | Zk−1 = Γ) = 1

Therefore, for each j > 1, Mj = Mz, where Mz =
[
p 1 − p
0 1

]
, and ψ1 = δt(gt).
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Equation (3) can be simplified as

P (Zk = Γ) = ψ1

 k∏
j=2

Mj

U(Γ) = δt(gt)Mk−1
z U(Γ), U(Γ) =

[
0
1

]
. (4)

Initial goal:

P (Ft = i) =
K−1∑
k=1

P (V i = k)P (St,j = 1, k < j ≤ K | St,k = 2) + P (V i = K).

From (4), it follows for k > 1,

P (V = k) = P (V ≤ k) − P (V ≤ k − 1) = δ
[
Mk−1

z −Mk−2
z

]
U(Γ).

Denoting M1 = I, M2 = Mz − I and Mk = MzMk−1 for k ≥ 3, we have

P (V = k) = δt
1(gt)MkU(Γ).
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Furthermore, for occurrence i > 1,

P (V i = k) =
k−1∑
k1=1

P (V i = k | V i−1 = k1)P (V i−1 = k1)

=
k−1∑
k1=1

P (V i−1 = k1)Pη(V = k − k1)

where Pη(V = k) = (1 − q)MkU(Γ).

P (Ft = i) =
K−1∑
k=1

P (V i = k)P (St,j = 1, k < j ≤ K | St,k = 2) + P (V i = K).

We have that

P (St,j = 1, k < j ≤ K | St,k = 2) = P (St,k+1 = 1 | St,k = 2)
K∏

j=k+1

(
Γt(gt)

)
11

= (1 − q)pK−(k+1).
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Simulation of Ft = ∑K
k=1 I(St,k = foraging)

Let’s recall the t.p.m. of {St,k}K
k=1 is given by Γt(gt) =

[
p 1 − p

1 − q q

]
.

Considering K = 100, and taking δt(gt) = (1/2, 1/2), the distribution of Ft was
computed for different values of p and q.
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Fixing p = 0.1 and varying q
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Fixing p = 0.6 and varying q
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Fixing p = 0.95 and varying q
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Prediction of animal condition (gt)

For K = 288 (1 day), wt = 70kg, gt = 0.2 (which implies bt = 0.2wt = 14kg),∑K
k=1 dt,k = 1.65km and p = q = 0.5, the following prediction distribution results:
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Distribution of Ft before and after incorporating observed
process

Number of ocurrences of state 2 = 179 (out of K = 288)
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Summary

General framework to model both positional and physiological data, with
percentage body fat used as a proxy for sheep’s overall body condition
Incorporation proposal of animal behaviour dynamics along with biological
equations, Et, for the prediction of latent processes bt and mt (related to gt)
Computation of the distribution of Ft, in which is encapsulated the animal
behaviour information
Prediction of gt+1, assuming wt, bt is observed
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Future work

Extend the model to more states (N ≥ 3)
Setting structure to incorporate bt,mt

Model implementation in Stan
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Thank you!
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