Mixed HMMSs: q promising tool for model selection
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It is crucial to understand narwhals ° normal behavior

Decadal migration phenology of a long-lived
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Narwhal location data
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Narwhal location data

e Tremblay Sound, Nunavut, Canada.
e One colour per individual
e 8 individuals.

8 Qg 9 oen ' e One month data, resolution of one hour.
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HMMs are an important modeling framework for analyzing ecological
time series.

Discrete
hidden state
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HMMs are an important modeling framework for analyzing ecological
time series.

Discrete
hidden state

l f(Ymi1| Smea= Smes) l F(Ymt| Sme= Smi) lf( Yimte1|Smt = Smew)

Continuous
observation
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EXAMPLE: the hidden state of the narwhal defines the step length observed
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EXAMPLE: the hidden state of the narwhal defines the step length observed
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I It is hard to determine the
number of states

>¢ W W

* Prior knowledge about the animal’s behavior

e Select the number of states with information
criteria (AIC, BIC)
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Case Study



Narwhal case study - — - <

[ 2 data-streams: turning angle and step
length.
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Narwhal case study - a

[ 2 data-streams: turning angle and step
length.
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Narwhal case study

2 data-streams: turning angle and step

— [ No assumption on the number of states
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- | Turning angle is a Von Mises distribution

Narwhal case study

[ 2 data-streams: turning angle and step
length.

Step-length emission distribution is a
gamma distribution

_ —

B Select the best-supported
o L -—'-}_}' : model for
modelling narwhals’ behaviour.
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Standard HMM selected 4 states

Travelling

Pohle, Jennifer, et al. "Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement." Journal of Agricultural, Bioldgical and
Environmental Statistics 22 (2017): 270-293.
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Standard HMM selected 4 states
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* Information criteria tend to favor models with numbers of states that are
undesirably large under misspecification.

Pohle, Jennifer, et al. "Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement." Journal of Agricultural, Bioldgical and
Environmental Statistics 22 (2017): 270-293.



Mixed HMMs

Random effects in HMMs
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Mixed HMMs are a promising tool to select the right number of states

* Four different mixed models: derived from the common standard HMM.
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The common standard HMM

* No individual effects on parameters,
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The common standard HMM
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The common standard HMM

* No individual effects on parameters,

* Independence between individuals

Number of individuals

/

M
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Initial state
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Mixed HMMs are a promising tool to select the right number of states

The common standard HMM

* No individual effects on parameters,

* Independence between individuals

Number of individuals

/ conditional probability density of the observation of the m th
M / individual given the hidden state at time 1.

%td = ]:I orP (Ym,l) I'P (Ym,Z) [P (Ym,Tm—l) I'P (Ym,Tm) 1, (1)

Initial state
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Null model: each individual has its own standard HMM

Highly parameterized model.
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Null model: each individual has its own standard HMM

Highly parameterized model. )

A \»
The complete likelihood for this model is: V

M
%ull= H 6mFmB»,(Ym,1) I'm Pm(ym,Z) I1um(ym,Tm—1) l—‘ml?n(ym,T,,,) 1, (2)
m=1
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Discrete-valued random effects: based on finite mixtures

K components, K is chosen a priori using model selection criteria.

A transition matrix per component.
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Discrete-valued random effects: based on finite mixtures

K components, K is chosen a priori using model selection criteria.

A transition matrix per component. %\i‘ oy

The complete likelihood for this model is:

—

MK N\
m|x H Z 5k)r(k)P ym r(k)P (Ym ) . )P( )F( P (Ym ) 17t(k),

m=1k=1
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Continuous random effects: normal distribution

. Random effect z.,;~ N(w.;,0%,) for i#j, z.~.;= 0 for i =j.

exp(zm',-J-)
'N= lexp(zm.“)

. Transition probability for the m-th individual ym,;=

Such that complete likelihood for this model is:
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Continuous random effects: normal distribution

. Random effect z.,;~ N(w.;,0%,) for i#j, z.~.;= 0 for i =j.

exp(zm'u)
IN= 1 €XP(Zm1)

. Transition probability for the m-th individual ym,;=

Such that complete likelihood for this model is:
M

Sf)cont - H lamrmp (Ym,l) l-‘mP (Ym,Z) "'FmP (Ym,Tm-l) l-‘mp (Ym,Tm) 1f (zm“" 0') dzm:

m=12

(4)

where f(Zm“l, 0') = H ;N=1H#if (Zm,;Jlﬂ;J, U;J) is the joint density of z. = (Zm,iJ)i# 43/56



Continuous random effects: t distribution

« Random effect z.,;™ ts for i#j, z.,;= 0 fori =|j.

. dfis the degree of freedom

. Fatter tail than normal distribution
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Simulation framework
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Simulation framework

Simulate 10 individuals under a scenario
(two-state gamma HMM)

46/56



T
Mixed HMMs are a promising tool to select the right number of states

Simulation framework

Simulate 10 individuals under a scenario
(two-state gamma HMM)

47/56



Mixed HMMs are a promising tool to select the right number of states

Simulation framework
Standard HMM

Simulate 10 individuals under a scenario
(two-state gamma HMM) —
N\

48/56



Mixed HMMs are a promising tool to select the right number of states

Simulation framework
Standard HMM

Simulate 10 individuals under a scenario
(two-state gamma HMM) —
N\

Mixture with two components

49/56
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Simulation framework
Standard HMM

Simulate 10 individuals under a scenario
(two-state gamma HMM) —
N\

Mixture with two components

Temporal Variation

transition probabilities

02 03 04 05 06
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(two-state gamma HMM)

!

[ Fit the four models with 2, 3, and 4 states J
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Simulate 10 individuals under a scenario
(two-state gamma HMM)
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[ Fit the four models with 2, 3, and 4 states J

!

Select the number of states, for each of
the five models, with AIC and BIC.
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T
Mixed HMMs are a promising tool to select the right number of states

Simulation framework

(two-state gamma HMM)

!

[ Fit the four models with 2, 3, and 4 states J

!

Select the number of states, for each of
the five models, with AIC and BIC.

!

Analyze the proportion of states selected
over 100 replications

[ Simulate 10 individuals under a scenario J
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Mixed HMMs are a promising tool to select the right number of states

Preliminary Results

Simul Scenario

Setting

Model (AIC)

number of hidden states selected

No misspecification
<

Mixture with 2 components
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Temporal variation
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2 (%) 3 (%) 1 (%)
97 3 -
95 5 -
56 42 2
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60 38 2
82 18 -
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86 14 -
51 49 -
90 3 /4
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